

The Mobile Web
Handbook

Published 2014 by Smashing Magazine GmbH, Freiburg, Germany.

Printed in the EU. ISBN: 978-3-94454093-1.

Cover Design, Illustrations and Layout by Stephen Hay.

Copyeditor and Proofreader: Owen Gregory.

Editing and Quality Control: Vitaly Friedman.

eBook Production: Cosima Mielke.

Typesetting: Markus Seyfferth.

The Mobile Web Handbook was written by Peter-Paul Koch

and reviewed by Stephanie and Bryan Rieger and Vasilis van Gemert.

Links and updates of this book can be found at

http://quirksmode.org/mobilewebhandbook.

Get the book.

https://shop.smashingmagazine.com/mobile-web-handbook.html

Table of Contents

F o r e w o r d

Introduction 	 9

C ha p te r 1

The Mobile World	 17

C ha p te r 2

Browser	 45

C ha p te r 3

Android	 67

C ha p te r 4

Viewports	 85

C ha p te r 5

CSS	 131

C ha p te r 6

Touch and Pointer Events	 147

C ha p te r 7

Becoming a Mobile Web Developer	 197

C ha p te r 8

The Future of the Web on Mobile	 219

Introduction

Introduction

I N T R O D U C T I O N 9

Introduction
The Mobile Web Handbook explores the differences between mobile and

desktop web development that we should be aware of when creating

websites for both. It’s not very technical — there are only a dozen or

so simple code examples. It discusses no libraries or tools. It’s about

mobile web fundamentals.

There is no mobile web distinct from the desktop web. Developing

websites for mobile is pretty much the same as developing for desktop,

especially now that responsive design techniques allow us to adapt our

CSS layouts to both huge desktop screens and tiny mobile ones.

Still, there’s “The Mobile Web” in the title of this book, and that’s not

an oversight or marketing trick. It serves as a convenient shorthand

for “touch-based small-screen web on more browsers than you’ve ever

heard of.” Mobile web development is not fundamentally different

from desktop, but there are subtle distinctions that may cause you

trouble if you’re unaware of them.

T H E M O B I L E W EB H A N D B O O K10

It’s best to see mobile web development as a layer that you apply on top

of regular web development, and which contains a few new concepts

and techniques that you must understand in order to create compelling

mobile experiences. This book concentrates on that mobile layer, and

highlights three topics:

1.	 On desktop we have only five browsers, but on mobile it’s more

like 20 or 30. These are not all separate browsers: many of them

are subtly different versions of the same browser, especially of

Android WebKit. Why is that? How do you handle it? Why is

Android so complicated? How will the mobile browser market

develop?

2.	 On desktop, there’s only one single viewport: the browser window.

On mobile, this viewport was split into two, and a third viewport

was added. Why do we need three viewports? How do they work?

3.	 Desktop has its keyboard and mouse events, and touchscreen

browsers need special JavaScript events to react to the user’s touch

actions. This may seem logical but Microsoft, of all companies,

challenged that logic and raised interesting philosophical

questions about the relationship between JavaScript events and

interaction modes. On a practical level, the touch events have

some special features that you need to know about.

Browsers, viewports, and touch events are the main themes of this

book. There are also a few smaller items: the rise and fall of browsers

and operating systems; what proxy browsers are; why a few CSS dec-

larations such as position: fixed are more difficult to get right on

mobile than on desktop; and becoming an accomplished mobile web

I N T R O D U C T I O N 11

developer by setting up a device lab and reconsidering outdated de-

velopment practices. As a bonus, you will learn why responsive design

works. (Not how. You already know how. But do you know why?)

So here we go. It’s going to be quite a journey.

What This Book Doesn’t Cover
In order to manage your expectations, here are a few topics that are

not treated in this book. This is about the mobile web, so there is no

information on native apps. You can use this book for creating hybrid

apps (that is, apps written in HTML, CSS, and JavaScript but wrapped

in native code), but only for the web component, not for the native one.

I’m not a designer, so I don’t say anything about design except for some

very vague general tips. No design patterns, either.

The mobile market is very volatile, and browsers and devices that are

a hit now could be a memory in a year’s time. That’s why I try to steer

clear of inspecting individual devices and browsers, though sometimes

I make an exception for Safari on iOS because it’s so very influential on

web development thinking.

Finally, the most complicated caveat: this book only investigates funda-

mental differences between desktop and mobile, and generally ignores

topics such as AppCache, which, though more important on mobile

than on desktop, are not unique to mobile. This is sometimes a subtle

distinction, but it helped me a lot in keeping the scope of this book, and

of my research, to manageable levels.

T H E M O B I L E W EB H A N D B O O K1 2

Companion Site
Writing a book about the mobile web is challenging because it’s one

of the fastest-changing environments ever — faster by far than the

traditional desktop web. I write this in summer 2014, and by the time

you read it things will have changed. That’s why I try to concentrate on

fundamental issues and problems, and don’t pay too much attention to

quick-shifting details such as browser bugs.

Still, you need to know about the bugs as well. That’s why I created a

companion site at http://quirksmode.org/mobilewebhandbook that con-

tains links to my browser research to back up what’s in this book — or,

as time progresses, to show which mobile browsers have mended the

errors of their ways, or changed, or done something else of note.

In this book I occasionally give browser compatibility notes, but more

often I’m rather vague; for instance, saying that “many browsers”

support this or that. The companion site always gives a breakdown of

those browsers, and includes notes on bugs.

Tablets
The Mobile Web Handbook focuses on mobile devices; that is, small de-

vices that fit in the palm of your hand and can establish a connection

over a mobile network. It does not really cover tablets or other types of

devices.

Still, a lot that’s in the Handbook also applies to tablets. Tablets, too,

have touch-based browsers, and although they have larger screens

than mobile phones, they’re still smaller than most desktop screens

and have three viewports instead of one.

I N T R O D U C T I O N 1 3

Besides, what exactly is a tablet?

Samsung, in particular, tends to bring

out more and more very large phones,

which you can easily see as small tablets

instead. The Microsoft Surface is a tablet

with an attachable keyboard, which

converts it more or less into a laptop

computer.

Right now we can’t tell if tablets are go-

ing to remain a separate device category,

or if they’ll quietly fold into the phone and laptop categories. From a

technical perspective it doesn’t really matter, though. Tablet browsers

are mobile browsers in all respects, and obey the same rules and

restrictions. Although this book will hardly mention tablets again, you

can safely assume that anything you build for mobile will work on a

tablet as well, with the obvious caveat that a tablet screen is bigger than

a phone screen and your responsive design should accommodate that.

Thank Yous
This book didn’t spring from my forehead fully formed. Plenty of people

were involved, and I’d like to thank all of them. Vitaly Friedman saw

the potential of this book, signed me up, and was the general editor

for all chapters. Markus Seyfferth arranged all practical matters such

as contracts and printing. Stephanie Rieger was good enough to be the

technical editor for all chapters. Stephen Hay signed on for the cover,

illustrations, and overall book design. Patrick Lauke edited the Touch

and Pointer Events chapter, a topic he knows more about than most

other web developers I know combined. Max Firtman went over the

Browsers and Android chapters and provided valuable feedback.

Is the Samsung Galaxy Note 8.0, released

in Q2 2014, a huge phone or a mini

tablet? Or is the distinction meaningless?

T H E M O B I L E W EB H A N D B O O K14

Then a compelling presentation by Jason Grigsby and a discussion

with the MSIE team caused me to overhaul the Touch and Pointer

Events chapter once more. Finally, Vasilis van Gemert read through

the entire second draft from the perspective of a teacher, while Owen

Gregory signed up for those last finicky copy edits that make a good

book a great one. Thank you all, ladies and gentlemen. The book

wouldn’t have been as good as it is now without your timely help.

All remaining errors are, unfortunately, my own.

Now let’s get started with a general overview of the mobile world. You’ll

find that it differs a lot from the desktop world we’re used to.

Chapter 2

Browsers

B R O W S ER S 45

Chapter 2

Browsers
If you’re used to the simple five-browser ecosystem that exists on the

desktop, you’re in for a surprise in the mobile market. So far, I have

identified about 30 mobile browsers, ranging from lousy to great. Not

all of these browsers are equally important: in fact, about 20 of them

are somewhat marginal. And just like on desktop, there may be differ-

ences between two versions of the same browser.

The Google browsers, Android WebKit and Chrome, come in several

flavors, and each flavor may have several versions. In fact, the Android

browser situation is so complicated that I’m going to give it an entire

chapter of its own. The current chapter mostly ignores Android and in-

stead talks about the other platforms, in particular iOS, as well as some

general principles.

You will find no compatibility information here: by the time the book is

printed, it would be outdated. You should turn to the companion site at

http://quirksmode.org/mobilewebhandbook for details on the differences

between the browsers.

T H E M O B I L E W EB H A N D B O O K4 6

Browser Types
There are four browser types on mobile: default browsers, download-

able browsers, proxy browsers, and WebViews. These categories over-

lap in places: a browser does not necessarily belong to just one category.

For instance, the proxy browser Opera Mini is downloaded by many

users, but is the default browser on some feature phones.

Default Browsers
Every phone has a default browser; that is, a browser that’s part of the

firmware, usually developed by the OS vendor. Thus Safari, developed

by Apple, is the default browser for iOS; and IE, developed by Microsoft,

is the default browser for Windows Phone. The table below summarizes

the default browsers of the platforms.

Sales market shares of mobile OSs in 2012 and 2013

Platform Default browsers Remarks

iOS Safari

Android Android WebKit or Chrome
Several flavors of both

(see next chapter)

BlackBerry BlackBerry WebKit

Windows Phone IE

Symbian Symbian WebKit

Firefox OS Firefox

Sailfish no name yet Gecko-based

S40
S40 WebKit on older ones; Xpress

on Asha.
Xpress is a Gecko-based

proxy browser

Other feature phones
Varies: Opera Mini, NetFront, UC

Mini, or others
Opera Mini and UC Mini

are proxy browsers.

B R O W S ER S 47

Most default browsers are tightly integrated with the underlying OS,

to the point where it is not possible to update the browser separately.

Thus, in order to get a new Safari version you have to update iOS; the

same goes for IE and Windows Phone. This causes default browsers to

develop more slowly than other types of browsers, which could mean

in future we have to go through another period where one old, bad

default browser holds back the entire mobile web, just as IE6 held back

the desktop web. Fingers crossed.

Incidentally, device vendors frequently refuse to give their default

browsers names. That’s why I use the unimaginative but fairly clear

“[Platform] WebKit” when necessary, and my compatibility tables are

riddled with Android WebKit, BlackBerry WebKit, Symbian WebKit,

and more.

Downloadable Browsers
There are a lot of browsers users can download and install for them-

selves. Opera, Firefox, Chrome, and UC are a few important ones. In

practice, this is only possible on Android, since installing other render-

ing engines is not allowed on iOS, and no vendor has yet produced a

downloadable browser for the small platforms.

One advantage downloadable browsers have over default browsers is

that it’s possible to update them whenever a new version is available.

The latest and greatest features usually land in downloadable browsers

first, which is one of the reason web developers tend to like Chrome,

Opera, and Firefox. We web developers are not like regular consumers

in that respect, though.

T H E M O B I L E W EB H A N D B O O K4 8

It appears that there is a difference between the Western developed na-

tions and the developed nations of east Asia. In the West, few consum-

ers bother to install a different browser — or even know it’s possible. In

Asia, consumers do download alternative browsers, such as UC or QQ

in China, and Puffin in Korea. A common reason is that these browsers

offer better integration with local social networks. Asian browser sta-

tistics often show downloadable browsers that rarely occur in the West.

What’s the point of creating a downloadable browser? The answer is a

combination of becoming or staying relevant on mobile, and making

money. These two goals are connected: the more relevant you are, the

more money you make. Browsers want more market share, and the

best way of getting that is to be included as a default browser on some

device or another. Before it comes to that, though, these browsers have

to show their worth by making a free version available for anyone to

try. We’ll get back to making money with browsers later in this chapter.

WebViews
A WebView is an OS’s browsing interface for native apps. For instance,

a Twitter client may call on the platform’s WebView to show a webpage

when the user clicks on a link in their feed. A game’s help pages may be

webpages, in which case the game app uses the platform’s WebView to

display them.

Apple doesn’t allow the installation of other rendering engines on iOS

devices. Therefore, other browsers wanting to move to iOS are forced

to use Apple’s WebView. This goes for Chrome on iOS, and also for

Opera Coast.

B R O W S ER S 49

In general, WebViews are separate programs that use many low-level

components (such as rendering engines) of the default browser, but

may differ in other respects. Testing on WebViews may therefore be a

good idea if you expect your pages to run in them.

Proxy Browsers
Then there are the proxy browsers. Their rendering engines, respon-

sible for parsing and executing HTML, CSS, and JavaScript, are found

not on the device but on a remote server. They do this to save their

users money.

The opposite of a proxy browser is a full browser, and it works as

we expect a browser to. When the user requests a page, the browser

fetches the HTML, CSS, JavaScript and other assets via HTTP, and once

it has everything, it renders and shows the page. All of these steps take

place on the client, and take up memory, processor time, and battery life.

Proxy browsers are different:

1.	 	 The user requests a page. They send not a normal HTTP request,

but a special request to a special proxy server over an encrypted

connection.

2.	 	 This proxy server makes the normal HTTP request to the web

server the user wants to access. It requests the HTML as well as

all assets, such as CSS, JavaScript, images and so on.

3.	 	 The proxy server contains a rendering engine, which renders the

page as usual.

T H E M O B I L E W EB H A N D B O O K5 0

4.	 	 The proxy server then compresses the rendered page into a kind

of image of the website: think of it as a PDF or an image map. It

has hotspots for links, and the user can also select text and zoom

a bit.

5.	 	 The proxy server sends this file to the client, again over an

encrypted connection.

6.	 	 The client shows the file to the user. If the user taps on links

or does something that requires code execution, the process is

repeated.

Opera took the lead in the proxy browsing world primarily because it

was the first to see the opportunities and enter the market. Nowadays,

though, serious competition is available. There are three important

proxy browsers:

1.	 	 Opera Mini: used throughout the world, especially in developing

countries on low-end devices. Based on Presto at the time of

writing, although Opera will eventually switch to Blink.

2.	 	 UC Mini: used mainly in China but branching out powerfully

across the world. This browser will become more important as

time goes by. Based on Gecko.

3.	 	 Nokia Xpress: the default browser for Nokia’s Asha (S40) low-end

phones, and also available for Windows Phone. Based on Gecko.

Now that the Asha line is discontinued by Microsoft, it will

gradually lose its market share.

B R O W S ER S 51

Advantage: Cheap
Proxy browsers primarily serve to save the user money. Because all the

proxy client has to do is show static files, allow for clicks or taps on

links, and generate a simple UI, it’s fairly light and able to run even on

low-spec phones. Users do not have to buy an expensive smartphone in

order to access the web.

Besides, all the client receives is a highly compressed file, which is

much lighter than raw HTML, CSS, JavaScript and image files, and it

uses only a single request and response. This saves a lot of mobile data

traffic — Opera claims up to 90%. Also, this will work even on older

networks, which is important to developing-world operators that don’t

want to spend money on upgrading their entire network.

Thus, proxy browsers serve to make the web accessible even to low-

income users who can’t afford a desktop computer or a smartphone.

Unsurprisingly, they’re especially popular in the developing world,

while being marginal in developed countries. Still, even affluent smart-

phone users on excellent connections will notice a distinct increase in

speed when they switch to a proxy browser.

Disadvantage: No Client-Side Interactivity
There’s a disadvantage to proxy browsing, too: no client-side interactiv-

ity. Proxy browsers support JavaScript, but every time the user causes

a JavaScript event (by clicking on an Ajax link or something similar),

the client sends a request back to the server for instructions. The server

executes the script, fetches new assets if necessary and sends back the

updated page, which, as far as the client is concerned, is a completely

new page.

T H E M O B I L E W EB H A N D B O O K52

It’s important to realize that this lack of client-side interactivity is a

feature, and not a bug. By giving up client-side interactivity, users save

themselves a lot of money. Executing JavaScript costs users money, and

some prefer not to pay the price.

Working with Proxy Browsers
You must learn to work with proxy browsers. Download Opera Mini to

your iOS or Android device now and start testing in it. A proxy browser

doesn’t quite work like the browsers you’re accustomed to, and many

users will get their first taste of the web via a proxy browser. Having at

least some experience with them is mandatory.

The problem is not in the HTML or CSS — they work pretty much

as you’d expect. It’s in the JavaScript that you’ll encounter the most

serious problems. Any time a proxy browser encounters anything

dynamic, it has to go back to the server and ask for new instructions.

Thus, there’s always a lag of a second or more between activation and

execution.

Although proxy browsers support JavaScript, most of them disallow

certain events. For instance, if you have an onscroll event handler,

it should fire whenever the user scrolls. But in a proxy browser, that

would mean making a server request with every few pixels of scrolling,

which would make the page completely unusable. Therefore, proxy

browsers disable the scroll event. The same goes for the mouse and

touch events.

B R O W S ER S 5 3

As a rule of thumb, assume that only events that clearly show the

user’s intent to load new data will work in proxy browsers. In addition,

mouseover is widely supported because so many websites depend

on it, and load and unload because they will be processed on the server

anyway. You can expect click, change, focus, submit and the like

to work, but mouseout, the touch events, the key events, resize and

scroll will not work.

I advise you to keep it simple and concentrate on the click event,

which always works everywhere. Add submit if you’re working with

forms. That’s it, though — do not expect other events to work on

proxy browsers.

Hybrid Browsers
Since saving bandwidth is such an

obviously excellent idea on mobile,

the true proxy browsers have been

joined by hybrid browsers: brows-

ers that can function either as full

or as proxy browsers. In most of

them you can switch bandwidth

saving on and off. They include

Amazon Silk, Puffin, Opera Mo-

bile, and Chrome. Unfortunately

the details of their hybrid behavior

vary a lot, and it’s hard to give

general rules.

Exactly how hybrid proxy browsers

divide up the work between client and

server depends on the browser and the

settings. See the Silk description at

http://smashed.by/silk; the Chrome

data compression proxy description at

http://smashed.by/data-compression;

and for more information on Opera

Turbo http://smashed.by/turbo.

I have not been able to locate similar

instructions for Puffin.

T H E M O B I L E W EB H A N D B O O K5 4

The iOS Browser Situation
Now that we know the various browser types, we can understand the

iOS browser situation. Remember the crucial fact: Apple does not allow

the installation of another rendering engine.

1.	 	 The iOS default browser is Safari. Duh.

2.	 	 In addition, iOS has a WebView for native apps that need it. Up

to and including iOS7 it was slightly different from Safari, but

at the time of writing the promise is that these differences will

disappear in iOS8.

3.	 	 Chrome on iOS may not install its Blink rendering engine, and

is therefore forced to use the Apple WebView. The same goes for

Opera Coast.

4.	 	 Opera Mini, however, neatly evades Apple’s restrictions because

its rendering engine resides on a server. Installing the Opera Mini

client is allowed, and therefore this browser is available on iOS.

In other words, the only non-Safari iOS browsers that it makes sense

to test in are the proxy browsers. At the time of writing there’s no other

proxy browser for iOS but Opera Mini, but that might change.

In particular, Chrome on iOS tests are relatively useless. Although the

Chrome app offers you integration with your Google account, when

it comes to actually rendering webpages it must use Apple’s WebView.

Thus, although you can test on Chrome for iOS if you feel like it, this

does not tell you anything about the real Chrome on Android, which is

a completely different browser.

B R O W S ER S 5 5

The Browser Situation On Other Platforms
The other platforms are even simpler to understand than iOS. They

have their own default browsers, and usually Opera Mini is also avail-

able. Although in general the installation of other rendering engines is

allowed, no vendor has yet decided to build a new browser for Black-

Berry, Windows Phone, or any of the others.

Rendering Engines
Every browser has a rendering engine that is responsible for the inter-

pretation of HTML, CSS, and the DOM parts of JavaScript. Just like on

desktop, there are four important rendering engines on mobile: Gecko,

Trident, WebKit, and Blink. In addition, Opera’s old Presto engine lives

on in Opera Mini for now.

Until about 2010 BlackBerry, NetFront, UC, and a few other browsers

had their own proprietary rendering engines, but with the advent of

mobile browsing as core platform functionality it became clear that

these engines were inferior to the desktop ones, especially in JavaScript

and performance. Therefore all proprietary mobile rendering engines

were replaced by desktop ones.

Most browser vendors decided to use WebKit. Trident and Presto, back

when it existed, were proprietary, and so not an option. As for Gecko,

its use beyond Firefox is restricted to UC Mini and several Nokia-de-

scended browsers. The lack of adoption is probably caused by the fact

that back in 2009, when most vendors took these decisions, Gecko was

still far too heavy for mobile processors and memory constraints.

T H E M O B I L E W EB H A N D B O O K5 6

Meanwhile Mozilla has streamlined its engine in order to create

Firefox Mobile, but that change came too late to profit from the initial

wave of rendering engine replacements.

Google forked Blink from WebKit in 2013, when the wave of replace-

ments was over. Nowadays it’s becoming an option for Android ven-

dors. We’ll go into that in the next chapter.

There Is No WebKit on Mobile
So many mobile browsers use WebKit as their rendering engine that

it’s more efficient to list the ones that do not:

•	 IE Mobile uses Trident.

•	 Opera Mini uses Presto, but will eventually replace it with Blink.

•	 The Chrome browsers use Blink. We’ll get back to them in the

next chapter.

•	 Firefox Mobile and Firefox OS use Gecko.

•	 UC Mini, Nokia Xpress, and the default browser on the Sailfish

OS by Jolla also use Gecko.

Any browser not mentioned above uses WebKit. At first sight, the fact

that so many browsers use WebKit seems like a powerful aid to web

developers. Unfortunately, if a browser uses WebKit it does not mean

it’s the same as any other WebKit-based browser. In fact, there are con-

siderable differences between them.

WebKit is a rendering engine, not a browser. If you hand it HTML, CSS,

JavaScript, and images, it will deliver a rendered page. However, it does

not contain the modules necessary to request the assets or to actually

show the rendered page on the phone’s screen. It depends on the OS

B R O W S ER S 5 7

for interfacing with the keyboard, mouse, and touchscreen. Platform

owners have to provide all these functionalities.

WebKit provides support for hardware-accelerated animations but does

not contain the modules that communicate with the GPU and that

make sure that hardware animations actually show up on the screen.

If you want modern form fields such as <input type="date">,

you must write the date interface yourself. WebKit includes Apple’s

JavaScriptCore as the default JavaScript engine, but you may decide to

switch to another, such as Google’s V8. Finally, you may use a different

WebKit version than the other guy, but even if you don’t, two browsers

that both use WebKit 537 may be quite different.

So, there is no WebKit on mobile. A lot of browsers use more or less

the same rendering engine but differ a lot in their details. Testing your

website in all individual WebKit-based browsers is best. If it works in

Safari for iOS, it will not necessarily work in BlackBerry WebKit, or

Android WebKit, or Obigo, or Symbian WebKit, or Dolphin for Android,

or… well, you get the point.

Making Money From A Browser
Why do people make browsers? There are two fundamental reasons:

providing your platform with one, and making money. Any smart-

phone needs a browser. Therefore Apple, Google, Microsoft, Samsung,

BlackBerry and others must provide one. Simple.

However, other vendors want to make money with their browsers —

even if only enough to pay their engineers. There are three business

models for making money from browsers:

T H E M O B I L E W EB H A N D B O O K5 8

1.	 Selling your company (and browser).

2.	 Selling licenses for your browser.

3.	 Search engine deals.

When I started on mobile back in 2009, I tested all the downloadable

browsers I could find. Most of them were pretty crappy, but there was

one notable exception: the Iris browser for Windows Mobile created

by a small Canadian company called Torch Mobile. Several months

later BlackBerry acquired the company to build a new WebKit-based

browser for its platform, netting the founders and engineers a nice bit

of money.

This doesn’t happen very often. I had the feeling that back in 2012 the

small Californian Dolphin browser groomed itself for acquisition by

Facebook, but nothing came of it. Not all that many companies are

interested in buying a browser, it seems, and the ones that are have

already done so.

Selling licences is a more forward-thinking business model. Opera,

especially, makes money from Mini licenses sold to operators, mostly

for use on feature phones without a good default browser. The opera-

tor gets a customized Opera Mini build for their devices without the

Opera logo. This is good for the operators, since browsing users spend

more money, but the operators don’t have to spend money on creating

their own browsers. I assume UC has similar deals in place.

Finally, all browsers have deals with all search engines in which they

get a small fee every time a browser user uses the search engine. These

deals are shrouded in mystery. The fact that they exist is well known,

but the details, especially the financial ones, are secret and will likely

B R O W S ER S 59

remain so. All browsers do it: it’s the easiest way for a browser vendor

to make money. The search engine deals are not restricted to down-

loadable browsers — default browsers do the same, both on desktop

and on mobile. The deals are more vital for downloadable browsers,

though, which usually don’t have other sources of income or the back-

ing of a wealthy corporation.

The search engine deals become more valuable as more people use

your browser. It’s in the interest of downloadable browser vendors to

encourage as many people as possible to use them. Whether they will

succeed is an open question.

Statistics
It’s time to take a look at statistics again. The best browser market

share stats are the ones that come from your client’s log files. Study

them to find out what kinds of phones are used to visit their website.

Be aware that users of some browsers might not be able to use the

website and so might be underrepresented. I usually look at statistics

for the homepage or another important landing page and compare

them with a few other pages. If a certain mobile browser is visiting the

homepage in decent numbers but is nowhere to be seen elsewhere on

the website, users of that browser are likely encountering a problem

that you must solve.

Finding and using general worldwide mobile browser market shares is

fairly hard. What we need are the mobile browser statistics of a first-

rank website such as Google or Yahoo. Unfortunately, these companies

keep their statistics a secret. As we saw, search engine vendors pay

browser vendors a small commission for every query they send, and

T H E M O B I L E W EB H A N D B O O K6 0

they want to hide these vital statistics from their competitors (and

from browser vendors). That’s why they do not share the browser

make-up of their homepage hits.

So, we’re reduced to using analytics services that gather these statistics

from their clients and share them freely. Unfortunately, these services

have a self-selecting bias because site owners (or web designers) have

to sign up for them and install a counter script. Thus, even though

these services present global data, it comes from a specific subset of

websites. I encourage you to sign up the sites you make to one of these

services and make the data a little more representative.

The choice is yours, then: either use the statistics, knowing they’re

incomplete and biased; or use none at all. To me, any data is better than

no data, but your mileage may vary. At the time of writing, I know of

three such services, and I encourage you to compare them.

•	 StatCounter (http://smashed.by/statcount)

•	 NetMarketShare (http://smashed.by/netms)

•	 Akamai (http://smashed.by/akamai)

Personally, I prefer StatCounter because NetMarketShare puts tablets

and mobile devices in one category, and at the time of writing Akamai’s

“New Features”, which comprise most of the mobile data, have serious

and persistent interface problems. (You should try it, though. Maybe

the problems have been solved by the time you read this.) So I used

StatCounter for the data below.

B R O W S ER S 61

Don’t stare yourself blind on tiny differences that are statistically

meaningless. What you’re after with global stats is the broad picture

of who wins and who loses. Chrome is a clear winner (but see the next

chapter), while BlackBerry, Nokia, and Opera lose.

One note: what is “Opera”? Opera Mini, or the full Opera Mobile

browser? Unfortunately, StatCounter does not give this information. I

assume that 99% consists of Opera Mini, because that would align well

with the fact that Opera is mostly present in developing countries, but

that’s a guess on my part and I may be wrong.

Browser Q2 2014 Q2 2013 Q2 2012

Android
WebKit

25% 30% 22%

Safari 23% 26% 24%

Chrome 18% 3% -

Opera 12% 16% 22%

UC 10% 9% 8%

Nokia 4% 7% 11%

BlackBerry 2% 3% 5%

NetFront 2% 2% 4%

IE 2% 1% 1%

Other 2% 3% 3%

StatCounter: Global mobile browser stats, Q2 of three years

T H E M O B I L E W EB H A N D B O O K6 2

Still, all this information doesn’t tell you which browsers will visit your

client’s site. If you don’t have specific stats available, take a look at the

stats for your country. They can be very, very different from the global

stats. See the next table, for instance.

Browser US UK India Brazil

Android 21% 17% 12% 31%

Safari 50% 46% 1% 14%

Chrome 21% 19% 4% 37%

Opera 1% 4% 25% 6%

UC 2% 1% 34% 1%

Nokia - - 10% 3%

BlackBerry 1% 8% - -

NetFront - - 7% -

IE 2% 3% 1% 4%

Firefox - - - 1%

Other 2% 2% 6% 3%

StatCounter: Mobile browser stats of four countries, Q2 2014

Can you spot the differences? Safari rules in the developed West, but

not elsewhere. BlackBerry is wiped out, except in the UK. UC is the

largest browser in India, while NetFront also retains part of the market.

IE and Chrome are more successful in Brazil than in other countries.

B R O W S ER S 6 3

As you can see, there is no global mobile browser market — just a col-

lection of local ones.

Although your country’s stats are much more useful than global ones,

there might still be factors affecting your site that influence the exact

browser make-up. But if you don’t have stats for that site, you’re forced

to use country stats instead.

In any case, you should now have some idea of which browsers you

need or want to target, even if it’s only elaborate guesswork. This will

inform your device purchases.

Now that we’ve gone through the simple stuff it’s time to look at the

more complicated part of the story: Android.

:active
:hover
@viewport
300ms
acquiring devices
anatomy of a click
Android
Android browsers
Android WebKit
AppCache
aspect-ratio
background-attachment
BlackBerry
Blink
browser compatibility
browser detection
browsers
browsing market share
cancelling the cascade
Chrome
Chromium
click event
commoditization
connection speed
consumer mindshare
CSS animations
CSS declarations
CSS pixels
CSS transitions
default browsers
developer mindshare
Device APIs
device lab
device orientation
Device Pixel Ratio (DPR)
device pixels
device-aspect-ratio
device-height

device-pixel-ratio
device-width
differentiation
downloadable browsers
dpi
dppx
drag and drop
drop-down menu
em media queries
event equivalents
event properties
featurephone
Firefox OS
gesture events
global device market
Google Services
HTML5 vs. native
hybrid browsers
ideal viewport
initial containing block
initial-scale
installed base share
interaction mode
iOS
iOS browsers
JavaScript events
JavaScript properties
layout viewport
maximum zoom
maximum-scale
media queries
media types
meta viewport
minimum layout viewport
width
minimum zoom
minimum-scale
mobile device vendors

 138
 138
 109
 174

 200
 174
 65
 71

 71ff.
 219
 117
 136
 37
 73

 130
 209
 43ff

 29
 172

 73ff
 73
 51
 16

 213
 22

 140
 129ff.

 85
 140
 44
 22

 220ff.
 196
 92

 101
 85
 117
 116

Index
 116
 116

 17
 45

 102
 102
 151

 149
 114

 154ff.
 188

 25
 39

 148
 26
 70

 218
 51
 91
 88

 105
 28

 153
 36ff

 52
 122

 120ff.
 88ff.

 98
 108
 110
 111

 103

107
 98

 108
 16

mobile network
mobile network operators
mobile testing
mobile value chain
mouse event bubbling
native
Nokia
Opera Mini
Opera Mobile
operators
orientation media query
orientationchange event
OS vendors
overflow-scrolling
overflow: auto
page zoom
perfect meta viewport
physical resolution
pinch zoom
pixels
pointer events
pointerout
pointerover
position: fixed
preventing defaults
progressive input enhancement
proxy browsers
rendering engines
resize event
resolution media query
sales market share
sales market share
scrolling
sharing devices
smartphone
smartphone development cycle
tap action
testing in batches
testing process
testing strategy
testing tools
Tizen
touch action event cascade
touch events

 212
 15

 195
 15

 172
 219ff.

 38
 48
 92
 15

 117
 122
 36

 135
 134
 96

 106
 100

 97
 84

 146ff.
 160
 160
 131

 182
 162

 47ff.
 53

 122
 100
 28
 31

 152
 201
 25
 23

 169
 206
 208
 202
 204

 38
 168

 145ff.

touch-action
touchLists
user-scalable=no
vh unit
viewports
visual viewport
vw unit
WebKit
WebViews
width
window.devicePixelRatio
Windows Phone
zooming

 189
 178
 98
 137
 83
 90
 137
 54
 46

 104
 102
 37
 94

Get the book.

https://shop.smashingmagazine.com/mobile-web-handbook.html

	TOC
	Introduction
	Browsers
	Index

